
where the 6x6 twist propagation matrix, Aj,i-l ,and the 6-dimensional joint-motion-propagation

{2}t, = A .. It· I +p.e.·1 .,l- 1- 1 J

where roi and Vi are the 3-dimensional vectors of angular andlinear velocity of the origin point, 0i'
of the ithbody, respectively, whereas, n. and f. are the 3-dimensional vectors of the moment about 0.and

I I I

the force at O, respectively. Now, the twist, ~, can be obtained from its previous one, t.e., the {i-l)st one
[5], as

(I)

ABSTRACT
This paper presents a recursive algorithm for kinematic and dynamic analyses of a closed-loop system,

namely, a four-bar linkage. Aminimal set of constrained dynamic equations of motion are obtained using
the decoupled natural orthogonal complement (DeNOC) matrices from the uncoupled Newton-Euler
equations. These constrained equations contain the Lagrange multipliers representing the loop-closure
reactions. Lagrange multipliers are solved first. Reactions at other joints are then determined recursively
using the dynamic equilibrium equations of each link of the linkage at hand.
1. Introduction

Four-bar linkages areWidelyused in mechanical devices owirw to their simplicity of structure, ease of
manufacturing, and low cost. Kinematic synthesis, dynamic design, and optimization are the essential
components in their design process [1]. The process is highly iterative to reach at satisfactory design.
Traditionally, kinematic and dynamic analyses have been done for few critical configurations using any
of graphical or analytical techniques. Analytical techniques depend on the formulation of dynamical
equations of motiolf.a~ their solution methodology [2]. In this paper, a recursive formulation isproposed
for the kinematic and dynamic analyses of four-bar linkages. It is virtually opened by cutting a loop­
closure-joint. Then. the dynamic equations are derived in Cartesian coordinates [3]. Finally, using the
decoupled natural orthogonal complement (DeNOC) matrices associated with the velocity constraints of
the connected links,' the dimension of dynamic equations is reduced [4-6]. Note here that the relative
velocities and accelerations of the unactuated joints are determined recursively form the actuated one
[7].Since the reaction forces at the cut-joint are nothing but the Lagrange multipliers [8), they are calculated
ftrstfrom the dynamic equations. Next, it is shown that the reactions at the other joints can be obtained
recursively by writing the force equilibrium equations for each link [9].
2. Definitions of Twist and Wrench
- The 6-dimensional vectors of twist and wrench of the ith body shown in Fig. 1is defined as
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(7)

(6)

Like a serial chain arm's end-effector, point E on link #4 isassumed as the end-effector whose velocities
vanish, i.e., the twist, tc = t. = to' The joint acceleration of each link is Similarly determined by
differentiating the twist expressions with respect to time and rearranging as

(5)
- -T

- - m. • ~ _ -T- . _"'" PiPj. d oPi =:wi+iAei Pi, ui=Pi Pi, <I>i~'Vi+l---, an ""5=1S·1

(4)
-T. p.

9i = t-(tc - Ae,H~-I), for i=2, 3, 4
1

where

lengths, ai' for i=1; 2, 3, are required to
define the system's configuration Fig. 2 A four-bar linkage'

unambiguously. Fourth joint coordinate, 94 ,is redundant, as 94 = 41t - (9] +92 +93) •The four-bar linkage
.has one-degree-of-freedom (dot). Hence, it can be controlled by a single actuator only. Let us assume that
the actuator is located at 01' Fig. 2. Other joints, 2, 3, and 4, are the unactuated joints whose joint-rates
are obtained next recursively using the methodology proposed in [7]. We do not give complete derivation
of the joint velocities and accelerations to save space. However, one can obtain the following expressions
using eq. (2): .

E

Links of the four-bar linkage, shown in
Fig. 2, are numbered as #1, ... , #4, where
#4· is the fixed link. The revolute joint
between link #4 and #1 is numbered as 1,
and similarly joints 2, 3 and 4 are
represented in Fig. 2. Positions of the mass
centers of each link are indicated by vectors
d. and r , for i=1, 2, 3, from the respective, ,
joints. The link lengths are defined by the
magnitude of the vector, a, for i= 1, 2, 3.,
Three joint coordinates.B, , and the link

two revolute joints at its two ends, ai,i-l == ai-I::: di-1+Ti-J.
Moreover, 0 and 1 are the 3x3 matrix of zeros and the 3'3 Fig. 1Definition of various vectors
identity matrix, respectively,whereas, 0 the 3-dimensional vector
of zeros, and ei the unit vector parallel to the ith joint axis.

3 Recursive Relations for Unactuated Joint Rates and Twists

In eq. (3), ai,i-i is the vector from O, to OJ.l'For a link with

Pi == [ :] for prismatic (3)

vector are given by
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in which D, and Qj are the 3 x 3 cross-product tensors associated with the 3-dimensional vectors,
.dj and (1}j' respectively, which are defined as, Djl: == dj xx and nix == <OJ x x, for any 3-dimensional
Cartesian vector, x. Vector D. is the resultant moment about, 0., and f. is the resultant force at 0, as

1 1 I l

shown in Fig. 1.
In order to make the system equivalent to the dosed-loop system the cut-joint forces, known as the
Lagrange multipliers, are introduced at the cut-joint. Writing the NE equation, eq.(lO), for i=l, 2,
and 3, gives 18 uncoupled scalar equations of motion for the four-bar linkage as

(11)

where the 6 x 6 matrices of the extended mass, M, and of the extended angular velocity, W.,and the
I I

6 x 6 coupling matrix, S are defined as

(10)

The matrices N, and Nd are the DeNOC matrices, whereas N is called the NOC matrix. The
Newton-Euler (NE) equations of motion for the ith rigid body with respect to the origin, 0" are then
expressed as [7]

(9)

The l8x 18 lower block triangular matrix, N;, and the 18x3 block diagonal matrix, Nd ' are as
follows:

(8):It = N9, where N ==N,Nd

where a.3 ;: Ae3[A32tz +A3Z(Azltl +AZltl + pzSz) +P393 +Ae3t:31. Note that a.( = a.3 +AezP292'

5. Dynamic Analysis

In this section, a novel dynamic formulation for four-bar linkages ispresented for the determination
of constraint forces and moments at the joints. FIrst, the four-bar linkage is opened by virtually
cutting a joint. One can cut any of the four joints of the linkage. Then uncoupled Newton-Euler
equations of motion for the resulting open system are written from the free-body diagrams in the
Cartesian coordinates. Sequentially, decoupled natural #2
orthogonal complement (DeNOC) [6] matrix associated
to the open system is used to reduce the dimension of the
equations of motion leading to the determinate set of
equations in terms of the constraint forces of the cut-joint 1
plus driving torque. Knowing the constraint forces at the
cut-joint, constraint forces at other joints are then 4 (]4, Y4)
determined recursively from the end body to the first body Fig. 3 Open system of four bar linkage
fixed to the base. The proposed methodology is efficient
as majority of the constraint forces and moments are evaluated recursive. Since the four-bar Iinkageis
a closed-loop system, the joint co-ordinates 91,92, and 83 are not independent due to the loop
closure constraint. First, they are made independent by cutting the joint 4.

Now, the 18-dimensional generalized twist, t == ~[, tI, tI r, of the open system is obtained from
eq. (2) as
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(20)

obeing the 6 x 6 zero matrix, whereas 1..1 and 1..2 are the Lagrange multipliers representing the reaction
forces at joint 4 along the X and Y-axes, respectively, as shown in Fig. 3, The generalized forces and
moments due to the Lagrange multipliers, 'tAo , is then obtained as

(19)Afa[ ~]. E'=[O ° 0 1 0' O]T, Aa[A1J'
" 0 0 0 0 1 0 ,and 1..2

)l34 '

where the 18x 6 matrix, A', the 6 x 2 matrix, E', and the 2-dimensoinal vector A, are as follows:

(I8)

In which the 6x6 matrix, A;4, is the wrench propagation matrix, The generalized wrench associated
with the Lagrange multipliers, wT , eq. (16), is now expressed as

(17)

where the joints'associated with links #1 and #2 are not cut. Hence, w~ == wi == o. For the other link,

#3, joints 4 (between #3 and #4) is cut. Hence, w~ with respect to its origin point, 03' is obtained as

, '/

(16)[
T T TJTwA= w~ w~ w~

For the planar four-bar linkage having all revolute joints, eq. (15) is converted into three scalar equations
with three unknowns, namely, two Lagrange multipliers at the cut-joint and one driving torque applied at
joint 1.Hence, the constrained NE equation of motion, eq. (15) are solvable, Note here that the wrench
associated with the Lagrange multipliers, w" , for the planar.open four-bar linkage defined as

(15)

constraint forces and moments do not perform any work, i.e., tTwe = eTNTwc == 0 eq.(17) is rewritten as
Equation (14) is constrained NE equation of motion. Since for independent e NT we = 0 because the, ,

(14)

Moreover, the 1S-dimensional generalized wrench vector, w, is defined as w = [w J , w2J, wI r.The
expressions in the left hand side of eq. (12) denote the effective inertial forces and moments, and those on
the right hand side are the external forces and moments. The wrench, w, can be split into three part,
namely, the wrench due to externally applied force we, wrench of constraint forces due to joints, w", and
the wrench of the Lagrange multipliers due to the cut-joint at joint 4, w),.. Therefore, w == we +WAo +we .

, '

Premultlplying eq. (12) by N'Ieeds to

{13)

where the 18 x18 matrices, M, W, and E are the generalized mass, angular velocity, and coupling
matrices, respectively, i.e.,

(12)Mt+WMEt =w
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where n~ and ft ' for i=1,2,3, are the scalar inertia moment and the force vector determined using
the left hand side of eq. (10), respectively, whereas E is the 2'2 planar rotation matrix by 900 that takes
care of the result of a vector cross-product in planar motion. Matrix.E is defined as

E=[~ ~1]

(27)

(26)'te = [wf TPI 0 or = [1; 0 0y
Finally, substituting . 't~ and 't", eqs. (20) and (26), respectively, into eq. (15), one can obtain the

unknown Lagrange multipliers and the driving torque by solving

and w~ = [0 0 r 0 0 of; and w~ =w~ =o. Here, it is assumed that all joints are frictionless and
the motion is on a horizontal plane, i.e., no gravity effect ispresent. Using the expressions for the DeNOC
matrices, eq. (9), the generalized external forces is obtained as

(25)

Similarly, the generalized external forcesdefined as, 'te :;;;NTwe , can be obtained systematically, whose,

we. is given by

; I

The terms, aj,jx and ai,jy, are the components of vector aj,j along X and Y axes, respectively. The
matrix, J, is nothing but the constraint Jacobian which can be verified by the writing the loop-closure
equations [3] associated to the four-bar linkage.

(24)

for i=1,2,and 3, and j=4. The 2 x 3 matrix, J, eq. (21), is simplified for the planar four-bar linkage, .
Fig. 3, as . .

(23)
a~jy 1-a· .

l,JX

o
ei == [~l;and aj.j xl =[ ~ ~

I -aj,jy ai.jl\

Using the associated vector and matrix expressions, i.e,

(22)A!. = A'·· and A~·A/·k = A~k1.1 J,l , 1,) J, 1,

(21)J = E,T [A41Pl A42P 2 A43P3']

where the following properties of the twist and wrench propagation matrices [9] are used:

Upon substitution of the expressions of the DeNOC matrices from eq. (9) and that of matrix, A' , from
eq. (19), the 2 x 3 matrix, J, is given by
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I..:;

(c) Joint acceleration, 8i
Fig. 5 Kinematic analysis of Hoeken's mechanism

(b) Joint velocity. 8i(a) Joint angles. Bi

I~

Table 1 Link parameters

;

Lillk Length, aj Mass, m, Moment of inertia, II Initial Position, ~
No. , (mm) (Kg) (Kg-mm2) (degree)
1 38.1 1.5 725.80 0
2 115.2 5.0 88473.60 77.12
3 115.2 3.0 13271.76 -154.24
4 89.5 0

Fig.4 The Hoeken's mechanism

150,--.......,..--,.---.---..----.---,results of the kinematic analyses, namely, ,Eli, Eli, and 9i) for
i=1, ... , 4, are given in Fig. S.

The constraint forces. are. obtained using the methodology
presented in Section 5. The Lagrange multipliers, namely, A) and
~\, and the driving torque, t, related to the motion constraint are
evaluated first using the constrained NE equations of motion, eq.
(15), and shown in Fig. 6. Reaction forces (Fig. 7) at other joints,
namely, at 1, 2, and 3, are then evaluated using the recursive
force and moment balance equations. The above results are also
verified using ADAMS 200S (Automated Dynamic Analysis of
Mechanical Systems) software [12]. The results match exactly: l .

The constraint forces and moments at the other joints, namely, at joints. 1, 2, and 3, can be computed
using the recursive formulation proposed in [9J. Hence, all the forces and moments acting on all the links
and joints are determined, which are useful for the design of linksand joints, force and moment optimization,
and any other dynamic applications.

6. Numerical Example
The Hoeken's four-bar mechanism used in the carpet scrapping machine that has been designed and

developed at lIT Delhi [10] is taken here for the illustration purposes. The mechanism is shown in Fig. 4,
whereas its link parameters are given in the Table L The input motion provided to link 1 is a constant
speed of 45 rpm (4.7124 red/sec) whereas the coupler point C traces a straight line. The fixed Inertial
frame, XYZ, is located at joint 1, l.e., 01. Kinematic analysis is performed using the recursive joint rates
and accelerations discussed in Sections 3 and 4. Position analysis is resolved using the loop closure
equations, given in the text books on mechanisms, say [11]. The
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7. Conclusions

A recursive algorithm for the velocity and acceleration analyses of a closed-loop system, namely, the
four-bar linkage is .pr9'sented. Besides, the dynamics algorithm is separated into two layers, In the first
layer, constrained dynamic equations of motion using the Lagrange multipliers that represent the cut­
joint reactions and the driving torque are solved simultaneously, followed by the recursive evaluation of
the rest of the constraint forces, This way, simultaneous solution all the uncoupled Newton-Euler (NE)
equations of motion is avoided, Hence, the efficiency and numerical accuracy of finding the constraint
forces are improved.
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