
ABSTRACT

This paper deals with the kinematics of pantographs masts, which have widespread use as deployable
structures in space. They are overconstrained mechanisms with degree-of-freedom (d.o.f), evaluated by
the Grubler-Kutzbach formula, as less than one. In this paper, we present a numerical algorithm to
evaluate the d.o.f of pantograph masts by obtaining the null-space of a constraint Jacobian matrix. In the
process we obtain redundant joints and links in the masts. We also present a method based on symbolic
computation to obtain the closed-form kinematic equations of triangular and box shaped pantograph
masts and obtain the various configurations such masts can attain during deployment.

1.0 Introduction
Deployable masts used in space are prefabricated structures that can be transformed from a closed

compact configuration to a predetermined expanded form in which they are stable and can carry loads.
Deployable I foldable mast have one or more internal mechanisms [1-2] and their d.o.f as evaluated by
the Grubler-Kutzbach criterion often turns out to be less than 1[3]. In this paper we study the kinematics
of deployable masts made up of pantograph mechanisms or scissor like element (SLE). An SLE in two
dimensional form has straight rods of equal length connected by pivots in the middle. The assembly has
one d.o.f and the basic model can be folded and deployed freely. Three dimensional masts are created
with SLE in such a way that they form a structural unit which if)plan view is a normal polygon with each
side being an SLE. The polygon can be equilateral triangle, square or nonnal n-sided polygon. By combining
several of these normal polygon shaped units, structures of various geometric configurations can be
created [4J. Active cables control the deployment and pre-stress the pantograph and passive cables are
pre-tensioned in the fullydeployed configuration. These cables have the function of increasing the stiffness
when fully deployed. The whole system deploys synchronously.

The kinematics of pantograph masts can be studied by use of relative coordinates[5], reference point
coordinates (as in the software package ADAMS) or Cartesian coordinates[6]. In this paper Cartesian
coordinates, also called natural I basic coordinates, have been used. This method uses the constant
distance condition for two or more basic points of the same link. Using unitary vectors the method can be
extended to spatial mechanisms. The main advantage of using Cartesian coordinates is that the constraint
equations are quadratic as opposed to transcendental equations, and the number of variables tends to be
(on average) in between relative coordinates and reference point coordinates. In an earlier study, the
foldability equations were formulated for SlEs based on geometric approach[7].

The equations of motion for the SLE masts were obtained and solved numerically using Cartesian
.'coordinates (8]. To the best of our knowledge, no attempt has been made by previous researchers in
obtaining the closed-form solution for these masts. Closed-form equations, are expected to considerably
. reduce computation time and allow us to obtain different configurations a mast can attain which helps in
better design of the system. In this paper the closed form kinematic equations are derived for the triangular
and box mast using symbolic software MATHEMATICA[9].

Typical deployable masts have large number of links and joints. The d.o.f of these masts, as evaluated
by the Grubler-Kutzback criteria, gives numbers less than one and hence, the d.o.f formula do not give a
true number. Other methods such as screw theory and graph representation have been proposed by
various researches to evaluate the correct d.o.! [10-'11]. The concept of using first and higher order
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where, Pm and m= i, j, k, 1 is the position vector consisting of coordinates of basic points.

3.3 Boundaryconstraints:The boundary constraints to exclude the global motion, need to be defined.

(2)
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where, TIJ = {(Xj -Xj ),(Y; - YJ),(Zj -Z)f and Xk'Y"and Z", K = jar j ,are the coordinates at
basic points i or j .

3.2 Joint constraints: These constraints describe the relative motion in accordance with kinematic
joints that link them. The kinematic constraints corresponding to spherical joint is automatically
satisfied when adjacent links share a basic point. Revolute joint is formed when two adjacent links
share a basic point and an unit vector. The constraint equations can also be formulated for the
slider pair[6J.

3.2.1 Scissor like element: Scissor like element (SLE) or pantograph is shown in the Figure 1.Link'
ij and. kl are coplanar and can rotate around the pivot. It is assumed that the two links are not equal
and pivot is not in the middle. The position vectors must fulfillthe following geometry conditions

Figure. 1. Basicmodule ofSLE Figure2.Triangular SlEmast Figure 3. BoxSLE mast

3.0 Kinematic Modelling
Modeling of three dimensional mechanisms with natural coordinates [6J can be carried out such that

the links must contain sufficient number of points and unit vectors so that their motion is completely
defined. A point shall be located on those joints inwhich there is a common point to the two links. A unit
vector must be positioned on joints that have rotation or translational axis. All points of interest whose
position are to be c9ri¥der~d as a primary unknown variable can like wise be defined as basic points. In
the natural coordinate system the constraint equations originate in the form of rigid constraints of links
and kinematic joint constraints

3.1 Rigid constraints of link: This imposes a constant distance condition between two natural

coordinates iandj of the link. This is given by rij • rij - L~= 0 {I}

1X .,

derivatives of constraint equations has been used for under constrained structural systems [12J to evaluate
mobility and state of self stress. In this paper, we use the natural coordinates and the derivatives of the
constJaint equations to obtain the correct d.o.f of deployable masts. We also present an algorithm to
identify redundant joints / links in a mast which leads to incorrect d.o.f from the Grubler-Kutzback
criteria.

2.0 Kinematic description of the mechanism
The simplest planar SLE is shown in Figure 1.The revolute joint in the middle connect the two linksof

equal length. The assembly has one degree of freedom internal mechanism. The SLE remains stress free
during the folding and extending process. The triangular mast and box mast are presented in Figure 2
and Rgure 3 respectively.
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Since, equation (5) is homogeneous, one can obtain a non-null if the dimension of the null-space

of [B](If,xlJ) is at least one. The existence of the null-space implies that the mechanism possess a

d.o.f along the corresponding X [6].

The deployable masts will have large number of kinematic pairs and links. It is useful to estimate the
minimum number of kinematic pairs without losing the desired motion of the system. The dimension of
null space basis is useful in estimating the d.o.f and identifying the redundant kinematic pairs.

3.5 Numerical Algorithm: The main steps in the numerica! algorithm are as follows:

i) Add the derivative of the constraint equations on~ at'~ time in the following order

arising out of length constraint

arising out of Slider/SLE constraints

ii) At each step we evaluate dimension of null space of [B]. If dimension of null space of [B]
doesn't decrease when a constraint is added it is redundant.

iii) Boundary constraints are added last and the dimension of null space of [B] is evaluated. If
dimension of null space does not decrease after adding a boundary constraint, then
corresponding constraint is redundant.

iv} The final dimension of the null space of [B) is the degree of freedom of the system.

In choosinq the basic points the finite dimensions of joints are not taken into account. The spherical
joints are taken at the intersection point of two adjacent links. In this formulation the initial folded
configuration is not considered as it can have many Singular configurations and hence does not give the
frue d.o.f of the system. The basic points of intermediate configuration is taken for the evaluation of
Jacobian matrix.

4.0 Closed form solution for triangular mast
The numerical algorithm presented above does not give the closed-form expressions for direct and

inverse kinematics of masts. To obtain them we have to use the Original constraint equations (not in its
derivative form) and attempt to obtain the minimal set of constraint equations and eliminate unwanted
variables. Elimination of variables from a set of nonlinear equations is known to be an extremely hard
problem and the difficulty increases with the number and complexity of each equation in the set. We have
used a symbolic computation software, MATHEMATICA,to obtain closed-form solutions for some masts.
The natural coordinates are useful in this respect since the equations are atmost quadratic in the variables
used. In this section, we present the approach to obtain the closed-form solution for a triangular mast
shown in Figure 2. For simplicity,we assume that (i) the links of SLEs are equal in length and the pivot is
at the midpoint of the links, [ii) the joints 1 to 6 are spherical joints, (iii)the joints 1,2and 3 are constrained

(5)

3.4 Constraint equations: The rigid constraint equations, joint constraints and boundary constraints

can be written as !j(X"X2, •••.•••• .xJl,t)= 0 for j = 1 to nc (4)

in which n, representsthe total number of constraint equations including rigid body conditions,
joint constraints due to SLE, slider, revolute pair and boundary constraints n and is the number of
Cartesian coordinates of the system. Derivative of the constraint equations, with respect to time
give the Jacobian matrix, which can be symbolically written as

(3)

If the basic point P is fixed, its coordinates are zero. If point Q moves along a plane perpendicular
to Z axis, its Z coordinate is zero. These equations are written as
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From the Equation(13}, we ha~e L2 -(X/ +Y/) ~ 0 If Ll _(X22 +Y/) = O. The coordinates of
joint 2 lie in a circleof radius L.This corresponds to the fullydeployed configuration with Z = O.Depending

on the magnitude, the joint 2 moves along the circle of radius L. If L' _ (X22 +~ 2) <'0 , the solution for
Z is imaginary. The coordinates of joint 2 lie out side the work space of the mast. The mast cannot reach

these coordinates. If L' - (X 22 + Y22) > 0 .The mast configuration includes the fully folded (Z=L) and

very close to the fully deployed configuration, (Z ~ 0 ).

In the above analysis the independent variables are taken as the coordinates of joint 2, The above
method can be used by taking the coordinates ofjoint 3 as independent variables. Alternatively Equations
(13) containing Xs and Y3 ' can be Simultaneously solved to evaluate the coordinates X2 and Y2 in terms

(13)X3 =.!.(X2 +.J3Y2) Y3 =.!.(Y2 ±.J3x2)
2 2

Hence, using Equations (13) and (7) through (9), the coordinates of all the joints of the triangular mast
can be obtained in closed form, It can be observed that for the given X21 Y2 coordinates of joint 2, four
configurations are possible-two configurations each for the positive and negative Z coordinate respectively,
Each configuration is the mirror image of the triangle formed about the line joining the joints 2 and L
Hence, assuming the mast moves only in the positive Z direction, the number of kinematic solution the
mast can have is 2.

Assuming X2,Y2 as known inputs, the solution for X3 'Y3' and Z can be obtained as follows.

(12)
..,.

X 2 y2 Z2 L2." "r.
3 + 3 + - :f"=,"-'

(11)

, I (10)

It can be observed that only two of the three linear SLE equations are independent. These can be
checked by reducing these linear equations to row reduced echelon form. By using the assumptions (iii)
.xi(iv), and substituting the above equations and observing that X4 = 0 and Y4 = 0 and solving, we get
only three independent equations with five variables.

(9)

(8)

(7)

(6)(Xs -XJ)2 +(Ys _1';)2 +(Zs -ZJ)2 -L~5=0

Similarly, the equations for the other links can be written.

The SLE equations can be obtained by using Equation (2) as

tomove ina plane, (iv)joint 1is fixed, and (v) the links are rigid and the cables used for pre stressing does
IU:affect the kinematics.

Using Equation (1), the length constraint equation for link 1-5 is given by
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The results of null space for box mast shown in Figure 3 are presented in Table 3. It is observed from
the table that the null space reduces by three by adding each SLEs. The null space reduces by only 2 for
the 3rd SLE. The null space does not change for the 4th $LE. The dimension of null space for the box
masts is 3. Hence, the mast has one rigid body rotation about point I and two mechanisms. It is observed
from the last row that the rank does not increase by adding additional boundary conditions because three
boundary conditions are sufficient to represent the motion in a plane.

Contents Size of (8] Null space Remarks
Length constraints (6,18) 12
+ Boundary conditions (n,18) 7
+ SLEI (14,18) '4
+SLE II (17,18} 2 (one component is redundant)
+ SLE III (20,18) 2 SLE - III is redundant

5.0 Results and Discussions
In this section the methodology for evaluating the d.o.f drscribed in previous section is used for
triangular and box mast. Finally we present the deploymi:mt simulation of a single triangular mast
using the closed from solutions.

5.1 Degree of freedom and redundancy evaluation: The triangular mast shown in Figure 2 has
six rigid constraints, 3 SLEs and fixed boundary conditions at joint-I. The additional boundary
conditions at' points 2 and 3 are required to ensure the motion in }\'{ plane. The results of null
space are presented in Table 2. It is observed that the null space reduces by three by adding the first
SLE. The null space reduces by only 2 for the 2nd SLE and it does not change for the 3rd SLE. The
dimension of null space for the triangular mast is 2. Hence, it has one rigid body rotation about

. point 1 and one mechanism.

Table 2 : B matrix details for Triangular mast

Solution (i) Solution (ii) Solution (iii) Solution (lv)

}';=Y2+P Y3 =Yz-P Y3=Y2+P Y3 =y2-p

X4 =X2 X4 =X1 X4 =-X2 +X3 x, =-X2 +X3

Y4 =Yz 'Y4 ::::Y2 Y4=p Y4 =-P

Z =+~L! -(X/ +YZ2)
~ z 2 2 ~ • 2 1 ~ 1 2 lZ = + 'L - (X 2 +Yz ) Z=+ 'L -(Xl +Yz ) Z=+ 'L -(Xl +Yl )

of X3 and Y3 and Equation (12) can be used to evaluate the coordinate Z.

Box Mast : For the box mast, there are eight length constraint equations and nine independent SLE
equations. We get following closed form solutions withX, Y2and X3 as input. The solutions with positive
Z axis are given in Table-1. This mast has eight solutions - four configurations each for positive and
negative Z coordinate. Each configuration has two folded type and two deployed type of configurations.

Table 1 : Closed form solutions for the box mast (p = ~2X 2X 3 - X)
2 + y12)
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6.0 Conc1usions
In this paper the Cartesian coordinate approach has been used to obtain the kinematic equations
for the three dimensional deployable SLE masts. The d.o.f was evaluated using the Jacobian matrix.
An algorithm was presented to identify the redundant kinematic pairs. Itwas observed that some of
the SLEs were redundant. Hence, these masts can achieve the required single d.o.f with out these
kinematic pairs. This formulation is easy to apply for the large number of masts. The kinematics of
triangular and box masts were studied in closed form and the multiple solutions were evaluated.
This method can be extended to masts of different shapes and for the stacked masts.

Figure 4 : Trajectory of joint coordinates for triangular mast
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The analysis was also carried out for the hexagonal mast and similar behavoiur was observed. Hence,
for the n-sided SLE mast, null space reduces by three for addition of each SLE and it reduces by only 2
for addition of (n -l}th SLE. The null space does not change for the addition of nth SLE.

5.2 Kinematic simulation for the triangular mast: The triangular mast with fully stowed
configuration is taken as the initial configuration. The coordinate X2 is varied from 0 to 30 units in
steps of 2 units, Y2 is taken as 0.0 and L = 30.0. The equations (13) are solved to get the
coordinates of joint 3 as the mast deploys. The simulation is shown in Figure 4. It is observed from
the figure that as the joint 2 moves horizontally, the two solutions of joint 3 moves along the +600
and -600 line about X axis. The decrease in height of the mast during deployment is also shown.
The simulation were also carried out for the two triangular masts attached at the sides. Due to page
limitations these are not shown in this paper .

. ';

Contents Size of [8] Null space Remarks

Length constraints (8,24) 16
+ SLEI (11,24) 13
+SLE II (14,24) 10
+ SLE III (17,24) 8 (one component is redundant)
+ SLE IV (20,24) 8 SLE - IV is redundant
+ Boundary conditions
(X = y = Z = 0) (23,24) 51 1 1

+ Boundary conditions

(Z = Z = Z =0) (26,24) 3 (Z4 is redundant)234

Table 3 : B matrix detai1s for Box mast
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