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ABSTRACT

Aeroelastic phenomenon is required to be studied for design and development of aircraft, particularly
for high speed as well as high aspect ratio wing. In the design of Unmanned Aerial Vehicles (UAVs), the
flutter speed has to be estimated and sufficient dive speed to flutter speed margin has to be established to
ensure the safety of the UAVs, The interaction of the elastic, inertia and aerodynamic forces is a dynamic
phenomena resulting in flutter. Flutter will occur when the artificial structural damping equals the actual
damping of the structure. It is computed using velocity-damping method by idealizing the wing as the
plate. Flutter speed is a function of structural properties like mass distribution, stiffness of the structure. If
the structure is made up of comnposite material, the stiffness is dependant on the characteristics of the
laminates namely thickness, materidl, fiber orientation of the individual lamina and number of such laminas
that make up the laminate. This paper highlights velocity-damping method with a case study applied to a
general composite laminate and studies how the laminate properties affect the flutter speed. This study
will result in having optimum laminate properties so that the flutter speed can be enhanced.

1.0 INTRODUCTION

The prime objective of the structural engineer is to design an airframe whose flight envelope is limited
by engine power rather than its structural limitations [1]. The use of filamentary composite materials in
aircraft structures offers a great potential for weight savings over the metallic construction. In addition to
the high specific strength and stiffness, the use of composite materials in the aircraft design offers greater
advantages to tackle the dynamic aeroelastic problems such as flutter and gust response.

2.0 AEROELASTIC FLUTTER PROBLEM (U-g METHOD)

The flutter problem is formulated using an indirect method widely known as the u-g method. In this
method, the structural damping coefficient (g), introduced into the equations of motion is plotted versus
velocity for each vibration mode. Since solutions to the equations to the motion represent conditions for
neutral stability, the value of g obtained in this manner represents the amount of damping that must be
added to the structure to attain neutral stability (flutter) at the given Velocity. Flutter will occur when the
artificial structural damping equals the actual damping of the Structure. To simplify calculations, the
flutter problem will be formulated using only the equations of motion from the two-term deflection equation.
As a first step strain energy of the aniostropic plate [5]
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As a second step the kinetic energy of the plate can be written as
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where m = p_t , where p_ is the specific gravity of the wing structure and t_ is the thickness of the
wing.

As a third step the Lagrange's equation {7] is given as
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Assuming sinusoidal motion for the vibration mode and neglecting warping stiffness of the structure,
the equations of motion can be written as
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I, 1,1, I, I are Non-dimensional integral expressions as given in [6)

The aerodynamic forces acting on the structure (8] can written as
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The flutter problem can be formulated as
K- 0?A]l {q} =0 2101
Where the stiffness matrix K and aerodynamic matrix A [4] are defined below
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¢ = chord length of the wing

(2.12)

The flutter frequency w, the damping ratio g and the flutter speed u are extracted as
@ = 1/ HReal (z)

g = imaginary (z)/real {z)

u = ba/k , b = semi chord length and k = strouh! number ~

The algorithm is iterated for different suitable values of k till the damping ratio becomes zero.
3.0 MATERIAL AND GEOMETRIC DETAILS

Three different maferial configuration were chosen for our parametric study namely Hercules AS/
3501-6 Graphite Epoxy laminate, High modulus Epoxy laminate and S-Glass Epoxy laminate. The material
properties of each material configuration are given in Table 1.

4.0 FFFECT OF LAMINATE ORIENTATION ON FLUTTER SPEED

The normalized flutter speeds were estimated using the Matlab code for different laminate orientation
corresponding to different material configuration. Table 2 gives the flutter speed corresponding to each
laminate otientation and material configuration. The variation of flutter speed with laminate orientation is
given in Fig 1. The various U-g plots required for the estimation of the flutter speed is placed in Appendix- A.

A study was also carried out to see the effect of laminate orientation on the flutter for a case where the
sequencing of the laminates were done primarily to take care of the inter laminar shear stress. The restlts
of this study shows that flutter speed is maximum for the case, which is designed to take, care ILSS. The
U-g plots for that case is also placed in Appendix - A.

5.0 CONCLUSIONS

The main objective of the work was to study the effect of laminate orientation on the flutter speed
for the composite laminates. The study was carried out for three different material configurations, each
having the same laminate orientation variation. From the results, it is clear that the flutter speed is maximum
for a orientation dominated by the 45° plies. This is because of the fact that the torsional stiffness {Gd)
influences more on the flutter speed. The design for maximizing the ILSS involves distributing more
number of 45° plies in a suitable manner, which in a way enhances the flutter speed.



Parametric Studies on Flutter Speed of Composite Laminates 233

In summary, aero elastic tailoring of aircraft wings can be an effective tool for enhancing the flutter

speed margin of the aircraft. As a future work, an optimum stacking orientation can be arrived in order to
satisfy the strength, stiffness, buckling, and frequency and flutter speed.
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Table 1: Material Properties of the Laminate

Parametez_-_,}, Hercules AS3501 High modulus Epoxy | S-Glass Epoxy
E (Pa} .~ / 130 x 10° 1.72 x 101 5.29 x 101
E. (Pa) 10.5 x 10° 1.17 x 10 1.90 x 10w
Poisson LT 0.28 0.28 . 0.25
G, (Pa) 6.00 x 10° . 441x1¢ 392 x10°
Ply thickness {m) 1.34 x 104 1.34 x 10 1.34 x 10+
Density kg/ m3 1.52 x 108 l.6x 108 20x 108
Table 2: Normalized Flutter Speed Vs Laminate Orientation
Orientation | Orientation Flutter speed Flutter speed Flutter speed
No : Normalized— Normalized - High Normalized - S Glass
- AS 3501-A modulus Epoxy -[] ¢
1 [0/0/90]s 0.92 0.87 0.948
2 [0/0/60]s 0.98 0.97 0.986
3 [0/0/45]s 1.0 1.0 1.0
4 [0/0/301s 0.99 0.97 0.986
5 [0/0/15]s 0.94 0.9 0.961
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Laminate Orientation Vs Flutter Speed
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fig 5: Effect of Laminate Orientation on Flutter Speed
g ol APPENDIX - A

Laminate Orientation [0/0/90] s
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Laminate orientation: [05/454/-454/05]

Laminate orientation: [0,/45,/0,/-45,/0] s
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