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Abstract: Dynamic modeling methodology of a mechanical system consisting of both rigid and flexible
links is presented in this paper. The model is based on the hybrid formulation of rigid-body systems, as
proposed earlier by the authors. Using the Euler-Lagrange equations of motion and the properties of
Decoupled Natural Orthogonal Complement {DeNOC) matrices, it is shown that the resultant dynamic
equations are equivalent to those obtained from the Newton-Euler equations. Hence the term "hybrid'
formulation was used. In this papet, the methodology is used to accommodate flexible bodies also. To
illustrate the concept, modeling of a single-link system under gravity, i.e., a pendulum has been carried by
considering it both rigid and flexibie, Experiments were conducted, where joint angles were detected
using potentiometer and the link deflections using strain-gauges. Damping of the joint was calculated
from the experiment and added to the theoretical model. Both the simulation and experimental results are
then compared
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1 INTRODUCTION

Research on robot arms with flexible links and its control started in the international arena since early
1970s. A comprehensive review of the various techniques of modeling flexible robotic arms s given in
[1]. Different methods for determination of the dynamic models of the multibody systems may be principally
distinguished into two Categories: those based on the scalar approach of Euler-L agrangian (EL) formulation,
and the others based upon vectorial Newton-Euler (NE) formulation. The EL formulation requires successive
differentiation of algebraic functions of the kinetic and potential energies of the system at hand. These
require complicated partial differentiations for complex multibodies. Alternatively, NE equations of motion
require the computation of reaction forces and moments at the joints which do not contribute to the
motion of the system at hand. However, using the concept of orthogonal complements, e.g., in [2], the NE
equations can be reduced to a set of independent equations of motion free from the reactions. In this
paper, a recursive algorithm for the forward dynamics of flexible robotic manipulators based on the
decoupled natural orthogonal complement (DeNOC) matrices is presented. Forward dynamics is defined
as the determination of the joint angles, rates from the numerical integrations of the joint accelerations
solved from a set of dynamic equations of motion while the extemal torques and forces are known.
Additional advantages of the use of the DeNOC matrices are as follows:
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1)They provide the expression of elements of the matrices associated with the dynamic equations of
motion in analytical recursive form; 2) Many physical interpretations of different terms appear in the
intermediate steps to derive the equations of motion, for example, the mass matrix of composite body,
etc; 3) Recursive algorithms for both inverse and forward dynamics are possible.

Dynamics of multi-link flexible manipulators are highly non-linear as the vibrational frequencies of these
robots are configuration dependent. Furthermore, external factors such as friction, joint damping, working
environment of robot, etc., cannot be accurately modeled without complex calculations and reasonable
assumptions. As such it becomes necessary to complement the theoretical studies with the experimental
observations for accurate dynamic analysis of the flexible multilink robotic systems. Extensive experimental
works on determination of the response of flexible manipulators are reported in the literature (3-6]. Shuzhi,
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Lee and Zhu [3] have studied the strain feedback of a single-link flexible manipulator for improving its
regulation. Results using strain gages and accelerometers as encoder devices have also been reported [4-
5]. In this papet, results of a series of experiments conducted at the Mechatronis Lab., IIT Delhi on a

single rigid and flexible link pendulums are reported. A comparision of the proposed theoretical model
and the experimental results is carried out. The paper is organized as follows: In Section 2, the dynamic
modeling methodology using the DeNOC matrices is presented whereas Section 3 presents the dynamic
modeling of rigid and flexible pendulums. Section 4 presents the details of the experimental set-up, whose
results are given in Section 5. Finally the conclusions are given in Section 6.

2 DYNAMIC MODELING USING THE DENOC

Figure 1 shows a serial system having a fixed base, and consisting of r rigid and n, flexible links.

Fig. 1. An n-link serial robotic system Fig. 2 The i* flexible link and the elemental length, dx;

Fach flexible link is assumed to vibrate in 'm' modes. The total number of moving links in the robot is then,
n=n+n,. Now, the kinetic energy for each link, say, the i one, denoted by, T, is given by

i -2 (1)
T, = 5 Iﬂfffrf:dxi 1T +Tp
where p_is the mass pgr unit length of the i link, and r, is the position vector of any small element in the

link after it is deflected from the rigid position, as indicated in Fig 2. The terms T, and T, are respectively
the kinetic energies due to hub and the payload on the #*link. The total kinetic energy of the whole system

is then obtained as, T = Z T, Next, the EL equations of motion of the system at hand can be obtained as
i=1

dfory er . . oo 2
dt\ 84, | og, T g = [9i by o by '
fori=1,...,nwhere g isthe (1+m)-dimensional vector of the independent generalized rates of linki, &,
is the displacement of the joint and b, is the time dependent amplitude variable at the k& mode. Moreover,
z,is the {14+ m)-dimensional vector of generalized forces due to gravity, strain energy and the external

forces and moments on the i link. Furthermore using the hybrid formulation proposed in [6], eq. {2} can
be shown to be equivalent to

(3}
NINTw=7
where ‘3’5[‘3’1T o #I| is the #A=6n +(6+mn, dimensional vector and 75[717 fg]r is the .

7=6n, +(6+mn, dimensional vector, whereas the 7x7 lower triangular matrix N, and the jix# block

diagonal matrix, N, are the DeNOC matrices of the flexible body manipulator similar to those corresponding

to the rigid body system {2]. Equation {3) will be illustrated with the help of a single flexible link arm in
- subsection 3.2.
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3. DYNAMIC MODELING OF PENDULUMS

In this section, dynamic modeling of a single link rigid and flexible arm, namely the pendulum system, is
carried out whose results will be compared with those available from the experiments.

_——

X
C (3 Rigid pendulum Fig. 3 Pendulum systems

3.1 Rigid Pendulum

For the rigid pendulum as shown in Fig. 3(a), first the 6-dimensional vector, # of eq. (3) [6] is written as,

; | |
,:,EJ,OP (xxi)? [ ax | (4)

Where # = % asthe origin of the link coincides with that of the reference frame. Vector ¥ or % isthe

acceleration of the elemental link dx shown in Fig. 3(a), which is expressed as # = # = ox x+ @x (@x x) = Gk

It}

in which @x({@xx)=0 as the motion is planer. Moreover, 7 is the joint acceleration, x is the magnitude
- of the vector, x, and h is the unit vector orthogonal to the unit vector f along x. The term  x # is now

obtained as xx 7 =§x? f x & = fix2e . The unit vector e is parallel to the axis of the revolute joint coupling the
wofl
link with the ground, i.e. fixed frame. Equation (4) is then Sbtained as

i J ok _
In order to obtain eq. (3) the DeNOC matrices are obtained next. Note that for the single rigid-link system,

the matrix N, is identity, whereas the matrix N, =p-p= [(;T et r being the 6-dimensional joint-motion
vector [2]. Equation {3} is then obtained as,

ol | Lt L ©

P
Hence the equation of motion for the rigid pendulum can be given by th? =7 where is the external

torque causing the motion. In the case of f:vendulum, 7 = d’gcosg- g being the acceleration due to
gravity. In the presence of hub inertia I, payload m . and damping, the eq. (6) is modified as

O Gom g1, |25 f=pl*gcosf+m,glcosd
T +my e+ 1, = + ¢ -.p gceost+m,glcos (7}

where # is the damping coefficient, which will be obtained from experiments as explained in Section 4.

3.2 Flexible Pendulum

Similarly for the flexible pendulum, as shown in Fig. 3(b), the link is assumed to vibrate in its first mode
only. First, the 7-dimensional vector, of eq. (3), is written as

!
ﬁ:sfp[?r (rxi)T i‘r/lrdx;:t:fb (8)

0
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where r=x+u and u is the deflection .o.fr the small element dx on the link, as shown in Fig. 3(b), 3, is the
vector of shape functions associated with vibrations in first mode. It is given by 2,=[0 s 0]7, in which
's' is the shape function associated in the XY plane of the link. Moreover, p=[0 b O] is the vecior of
vibration amplitudes which is a function of time. Vector # is the acceleration of the dx expressed
as,F=@xr+2oxu + i’ +wx (@xr)in § = [0 sh g}rwhich represents the component of the vector
u due to its change in the local coordinate frame, i.e., the one indicated with the unit vectors, fand h

shown in Fig. 3(b). Also, @x(@xr)=0 as the motion is planer. In order to obtain eq. (3) the DeNOC
matrices are btained next. Note that for the single flexible-link system, the matrix IN,is identity, whereas the

T T
matrix N; =P —P= [3? ;T (1)] being the 7X 2 joint cum flexibility propagation matrix. The left hand
of e 0 e [(x+u)xF)]
side of eq. (3) is then obtained as | g7 o7 (x";:;xf 3 ATE 9

FEr] .. . ..
Hence the equations of motion for the flexible pendulum is given by p(T +85,628 +S,b+28,605) = 7; and

p(S,8+8,b-28,b6%)=1,, where 7, and 1, are the external generalized forces, and S, and S, are the values

i i
of the shape functions evaluated over the length of link, i.e., 51 = I s%dx and S, = J-xsdx' Including the hub
i3 1}

inertia I, payload m , and damping the equations of pendulum mowing due to gravity only, i.e.5 = plgcod

andr, =0, become

PP 3+86% +m, (17 +S267)+ 1,0 +(Sy +m I8)b+2(S, + 52 )b0b+E0 = pl* g cos§-m gl cos O

LA

P(Sy +m IS )0 +(S) +m,57)b—(28, +m 8] )66 +¢,6=0 (10)

where §, =s(/), ¢ is the joint damping coefficient and ¢&,, is the modal damping coefficient for vibrations.
4. EXPERIMENTAL SET-UP

Objective of our experiments is to validate the theoretical results obtained using eqs. {7) and (10). In both
the cases, i.e., rigid and flexible, the pendulums are dropped from different heights. For flexible arm the
deflection at the tip is also measured besides the joint rotation. In the first part of experiments, the angular
displacement of the link using a wire-pot potentiometer, mounted at the joint while it is dropped from
different heights is measured. The output of the potentiometer is also verified using a 20g accelerometer
mounted at the tip of the rigid link. The experimental set-up is shown in Fig. 4. Building on the results of
the experiments on the rigid pendulum, the second part of the experiments is carried out to find the
position of the tip of the flexible peridulum. It has two components, namely, the displacement due to the
joint motion of the link under gravity, and the link displacement due to its flexibility. Since the joint motion
oscillations and the tip vibrations occur at different frequencies two separate transducers are used to
measure the above two components. In the present set-up, as shown in Fig. 5, the joint motion of the
flexible-link is measured using the same wire-pot potentiometer as used in the rigid pendulum. The deflection
in the tip position is measured using strain-gauges mounted at the root of the link. The strain produced at
the root of the link due to its bending in the lateral direction is calibrated to get the magnitude of the tip
deflection. Two strain gauges are mounted on each side of the link so that the proper conditioning of the
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teadings gives the direction of the deflection. The experimental results are then compared with those
obtained using eq. {10}. Note that the actual behaviors of the pendulums clearly indicate the joint damping
which is incorporated in the theoretical model by assuming its behavior linear. Moreover, the lumped
inertia due to potentiometer is included as the hub inertia and the mass of accelerometer is taken as a
‘payload at the tip of link. The damping coefficient is obtained from the decay curve of amplitude [7],

namely, ¢ =n¢ ; 7 is the ratio of the successive ampiitudes of oscillations and ¢, is the critical damping
coefficient inen by & =pl%f21g/3. |
4.1 Equipments Used

Figures 4{a)-(b) show the photograph and schematic diagram of the experimental set-up for the

measurement of the joint angle of rigid pendulum. Bourns: 10KQ, 4+ 25% linearity, wire-wound
potentiometer, and a 20g accelerometer are used. The physical parameters of the link are shown in Table
1. When the accelerometer is used to measure the joint motions the output is amplified using a Bruel and
Kjaer charge amplifier {Type: 2635; Lower frequency cut-off: 2Hz; Higher frequency cut-off; 30Hz; and
Calibration factor: 100mV/mm). The charge sensitivity and voltage sensitivity of the charge amplifier are
1.003pC/ms? and 0.88mV/ms™ respectively. The output of charge amplifier and the wire-bound
potentiometer are given to pico-virtual CRO, having a interface with Pentium IV Intel processor computer.
Note here that the joint motion using accelerometer fitted at the tip of the link is obtained as follows: The
charge ampilifier is set to displacement mode which would provide arc distance of the tip where the
accelerometer is fitted. Dividing the arc by the pendulum length gives the joint angle.

Figures 5(a)-(b} similarly show the experimental set-up for the joint-motion and tip deflection measurements
of the flexible pendulum whose physical parameters are given in Table 1. For calibration the link is clamped
horizontally and its tip is made deflected by increasing the load on it through a load-cup. The corresponding
change in the output voltage is then recorded on a sanwa DMM, PC5000digital multimeter of 0.01 resistance
and 0.01mV resolution. The strain-gauge signal is amplifiad usthg an ADAM-3016, DIN rail-mounted
amplifier module connected to a 1000DC Volts, 3-way isolation between input, output and power supply.
The calibration curve of the circuit shows a straight-line behavior. Here a Bourns: 10KQ , +25% linearity,
wire-wound, 10-turn wire-pot potentiometer is used at the joint for better resolution of joint angle
measurement. In order to measure the tip deflection due to the link flexibility four strain-gauges are put at
the root of the link clase to the joint, as shown in location 2 of Fig. 5(a}-(b).

5. RESULTS
In this section the results of experiments on rigid and flexible link pendulums are produced. First, the
experimental results for a single rigid pendulum are presented and compared with the simulation results

based on eq. (7) solved using ode45 function of Matlab 6.5. Then, the results for flexible pendulum are
presented and compared with the simulation results obtained from eq. (10).

5.1 Rigid Pendulum

Figure 6(a) shows the experimental plot of joint angle obtained from the wire-pot potentiometer when the
rigid link is falling freely under gravity from horizontal position, i.e., # =180° Figure 6(b) shows the same
result, i.e., the joint angle, using a 20g accelerometer when the link's initial position is 7 degrees in

anticlockwise direction from its vertical position, i.e., #=-97° Since an accelerometer works correctly in
a linear motion the angle of the pendulum from the vertical position is kept fairly small, i.e., 7°, so that the
motion is almost straight line providing correct results. This aspect has been checked by measuring the

results from the accelerometer when the link is dropped from 6 = 0° . It was not giving correct results. From
Fig. 6(a) the frequency of the oscillation obtained from the experiments using potentiometer is 0.9Hz,
whereas the frequency obtained from the theoretical formulation is 0.88Hz. The results match closely. For

the calculation of damping coefficient, § of eq. (7), experimental results of Fig. 6(a) or (b} are used and

linear damping is assumed. The value obtained for £ using the equation provided before Subsection 4.1
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as, £ =1.9x 10 Nms. Equation (7) is now used to obtain the simulation results using ode45 of Matlab.
The amplitude of oscillation matches closely upto 7 seconds before the results start deviating due to actual
non-linear effect of damping. The experimental results using the accelerometer, also match closely with
the simulation results as indicated in Fig. 6(b). However, since present work is conducted at moderate
speeds {maximum g =0 rad/s} the charge build-up characteristics of charge amplifier become prominent

and the accuracy of results is not as good as with the potentiometer. Moreover, the accelerometer cannot
be used for large angles of rotation. Hence a wire-pot potentlometer with higher resolution is used to find
the joint displacement of the flexible pendulum.

Table 1: Physical parameters of the link

Link Material |Length (m) | Crosssection {m?) | Mass{Kg) Hub Inertia (Kgm?®) |Payload (Kg)
Rigid Carbon steel 0.30 0.018x0.004 0.180 2x 107 0.020
Flexible | Springsteel 0.30 0.025%0.002 0.60 2x108 Q

(a) Photograph

b) Schematic diagram
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1. Rigid lmk 2. Wire-pot; 3. Pico CRO; 4. Accelerometer; 5. Charge amplifier;

{a) otograp

6. Computer; 7. Power supply

Fig. 4 Experimental set-up for rigid pendulum

b

)

Schematic diagram

1. Flexible link; 2. Strain-gauge; 3. Wire-pot; 4. Amplifier; 5. Pico-CRO; 6. Computer;7. Power supply
Fig. 5 Experimental set-up for flexible pendulum
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Fig. 7 Tip Deflections of flexible pendulums

5.2 Flexible Pendulum

In this section, experimental results for the single flexible pendulum falling freely under gravity from the
horizontal position, i.e., g=0° , with no initial deflection are presented. Since the joint angle results are
same as those for the rigid pendulum they are not reported. F igures 7(a)-(b) show the experimental and
simulation results while the link is released from the horizontal position and falling freely due to gravity.
The tip vibrations due to flexibility are the high frequency peaks while the joint motion oscillation is the
lower frequency curve. Moreover, the vibrations are more prominent in the initial cycles of oscillation.
Also, the rate of damping of the amplitude of vibrations due to flexibility is also different than the joint
damping. The damping in amplitude of vibrations due to flexibility is referred as model damping in the
literature [7]. In order to analyze the tip vibrations and joint oscillations, these frequencies can be segregated
using Fourier transformation or frequency filters. From Fig. 7(a), the oscillation frequency is obtained to
be 1.1Hz, whereas the Fourier transformation of the experimental results, i.e. Fig. 7(a), the tip vibration
frequency is 35Hz. From the simulation plots in Fig. 7(b), the oscillation frequency is also 1.1Hz whereas
the vibration frequency is 35 .5Hz. Hence, the proposed model for the flexible beam is validated. For the

verification of the tip vibration, an analytical formula [71, w, = B2 JEI[5 ,— B,E, Iand p being the numerical

constant depending upon the mode of vibration, link configuration, elasticity modulus of link, moment of
inertia of the cross section of link about its axis, and the mass per unit length of link, respectively-which
gives 35Hz. A quick experiment on the flexible fink has been conducted to calculate its natural frequency
as.well. For this, the tip of the link is displaced by hitting it mildly using a mallet. The link is allowed to
vibrate under its natural condition which is recorded and the natyral frequency of the flexible link is
obtained as 37Hz, which closely matches with that obtained analytically and the free fall simulation of the
flexible pendulum. In the paper, linear damping characteristics is assumed for theoretical model. Hence,
the experimental results start deviating from the simulation results when the non-linear characteristics of
the joint damping become prominent.
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6. CONCLUSIONS

Dynamic model of serial flexible link robot armm has been formulated using DeNOC matrices. Even though
the modeling is shown for n-link serial manipulators and suitable for recursive numerically stable forward
dynamics algorithms, it is illustrated with a simple single-link pendulum systems. In order to verify the
simulation results, a series of experiments were performed while the pendulum is dropped from different
angles. The experimental results are matching with those obtained from the simulations based on the
dynamic model. It is seen that the joint motion of the flexible link converges at a lower frequency as
compared to the elastic tip vibrations. The expetimental results are also highly sensitive to the characteristics
of the position transducers used. This difference is prominent in the case of rigid-link pendulum wherein
charge build-up characteristics of charge amplifier associated with accelerometer leads to delay in reaching
steady state of the transducer. The accelerometers cannot be used for measuring the angular displacement
of the links dropping from large angles, because these sensors are based on linear accelerations. Hence,
potentiometer and strain gauges are used to measure the joint-angle and tip-position of the flexible
pendulum. The strain-gauge set-up used has linear characteristics. However since the resistance of the
strain gauges is highly dependent on temperature, the experiments have to be carried out in controlled
environments. The contributions of the paper are highlighted as follows: 1) Exposure to a new dynamic
modeling methodology for a flexible robotic system; 2) lllustration of the above methodology using one-
link rigid and flexible arms; 3) Simulation using the Matlab; 4) Performing experiments to measure the
joint angles and the tip deflection for the flexible link falling under gravity, hence, the term pendulum is
used in paper; 5) Interpretation and validation of both the simulation and experimental results.
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