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Abstract

An identification method has been proposed for obtaining crack parameters, mainly flexibility
coefficients and as a by-product the equivalent crack depth, in a cracked beam. Euler-Bernoulli beam
theory is considered in modeling of the beam. A transverse crack is assumed to remain open and is
modeled by five flexibility coefficients in accordance with the linear fracture mechanics approach.
The proposed identification method relies on modal parameters (i.e. natural frequencies and mode
shapes) and location of the crack for estimation of crack parameters. Numerical simulations have been
presented to show the applicability of the method. The finite element method (FEM} is used to find out the
transverse natural frequencies and mode shapes of the cracked beam. Identified crack flexibility
- coefficients have been used to obtain the equivalent crack depth ratio in conjunction with Newton-Raphson
method. The identified crack flexibility coefficients and crack depth ratio are in well agreement with
assumed ones.
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1. Introduction

Crack is a damage that often occurs in structural members and may cause serious failure of the
structures. A crack must be detected in the early state. However, it is difficult to recognize a crack by using
visuat inspection- techniques, and it may be detected usually by non-destructive techniques.
Knowing the dynamic behavior of a structure with cracks is of significant importance in engineering.
There are two types of problems related to this topic: the first may be called "direct problem” and the
second called "inverse problem”. The "direct problem” is to determine the effect of damages on the structural
dynamic characteristics, while the "inverse problem" is to detect, locate and quantify the extent of the
damages. In the past three decades, both the direct and inverse problems have attracted many researchers
and many relevant literatures have been published.

There are lots of literatures that deal with crack modeling, natural frequencies and mode shape
analysis for transverse and longitudinal vibrations of the cracked beam. Wauer [1] presented a review of
literatures in the field of dynamics of cracked rotors, including the modeling of the cracked part of structures
and determination of different detection procedures to diagnose fracture damages. Gasch [2] provided
‘a survey of the stability behaviour of a rotating shaft with a crack and of the forced vibrations
due to imbalances. Dimarogonas [3] reviewed the analytical, numerical and experimental investigations
on the detection of a structural flaw based on the changes in dynamic characteristics. Doebling et al. [4]
provided an overview of methods to detect, locate, and characterize damage in structural and
mechanical systemns by examining changes in measured vibration response. Salaw [5] reviewed the use
of natural frequency as a diagnostic parameter in structural assessment procedures using vibration
monitoting. Factors (like, choice of measuring points, effects of ambient conditions on dynamic response
and consistency and reliability of the testing procedure, etc.) which could limit successful application
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of vibration monitoring to damage detection and structural assessment were also discussed. Recently,
Giridhar et al. [6] presented the review of literatures published since 1990 and some classical papers on
crack detection and estimation of its severity in shafts. The review was based on three -categories
namely vibration-based methods, modal testing and non-traditional methods.

Most of detection and diagnostic methods of crack are available in literatures based on feature
extractions of the free and forced responses, which becomes very complicated and difficult to use in
practice. Recently, Tiwari and coworkers [7-9] developed an algorithm for identifying the crack
flexibility coefficients and subsequently estimation of the equivalent crack depth based on the force-
response information. Based on the physical consideration of the problem reduction schemes were
outlined for eliminating the rotational degree of freedoms at crack element nodes, which is otherwise
difficult to condense with conventional condensation schemes.

In the present paper the natural frequency and mode shape informations have been used to obtain the
crack flexibility coefficients and subsequently size of the crack. it is assumed that the crack location is
known. The crack flexibility coefficients are used to obtain the equivalent crack depth by minimizing an
error function with the help of Newton-Raphson method. Numerical experiments were conducted to
identify the crack parameters. The crack flexibility coefficients and crack size identified by the
present algorithm closely agree with the assumed parameters.

2. System modeling

The Euler-Bernoulli beam theory is used for the transverse vibration of the beam. The FEM is used to
develop the beam model. The crack is assumed to be an open crack in the present analysis i.e. linear
analysis has been performed. Only single crack has been considered in the beam. The free vibration of
the beam is considered. The spinning of the beam has not been considered. For a cracked beam
element the flexibility can be expressed by a full 6x6 compliance matrix cotresponding to a general
loading as shown in Fig. 1. For the present analysis axial and torsional effects have not been
considered. Corresponding form of the 4x4 flexibility smatrix is (A detailed expressions of all
flexibility coefficients are given in the [7]) give as

Cp 0 0 0
[C ]{e) - 3 C33 0 0
¢ ol Cu 545 Where C._ is the crack flexibility coefficient. (1)
sym s

3. System equations of motion

The Euler-Bernoulli beam is descretized into number of elements, the equétion of motion for the
beam element without crack for free vibrations becomes

M€ {6 + K, T gt} = {0} (2)

Where [m]' is the element mass matrix, [K,J¢ is the element stiffness matrix and {g(t)}® is the element
vector of nodal degrees of freedom (dofs). The subscripit ‘wc’ represent without crack and the superscript
‘e’ represents element. Details of the mass and stiffness matrices are given in {7]. The equation of motion
of a cracked beam element can be expected as

MI® 4G ()} + (K. 1¥{q. )} = (0} _ (3)

Where {q,(t)} is the nodal dofs of the crack element, the subscript ¢ represents the crack and (K J® is the
stiffness matrix of the cracked element and it is given as

100 -1 10 00
K, 1" [TfCH" (1) win =00 51§ § 0 10 (4)
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Where [C] is the flexibility matrix of the cracked element alone and [T] is the transformation matrix. The
flexibility matrix [C] can be written as the sum of the uncracked element flexibility matrix [C J* amd the
crack flexibility matrix [C J* , hence
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[Cl9=[CJ*+ [C]®  with [C ] = j
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Equation of motion of the complete syster can be obtained by assembling the contribution of all equations
of motion for cracked and uncracked elements in the system. Then the system equation of motion becomes

(MK a()} + [K] {qft)} = {0} {6)
where [M] is the assembled mass matrix, [K] is the assembled stiffness matrix and {q(t)} is the assembled

vector of nodal dofs.
4, Free Vibrations

For obtaining natural frequencies, reduced system of equations of motion after applying boundary
conditions to equation (6)

(M) + (K <al)} = (0} (7

where [ﬁ] and [R] are the reduced assembled mass andfstiffness matrices. By assuming the solution of

the form = {c_;(t)} = {G}ejm“l‘ wherew_ is the natural fréquency and {6} is the corresponding mode
shape and substitution into equation {7), the associated eigen value problem becomes

(121 - pim) 3} = {0} @)

where [Z]=[K]'[M] is known as the dynamic matrix. Equation (8) contains n roots {p; r = 1, 2,...,n}

and p is related to the natural frequencies by p =1/ o7 . if {Q_,} represents the eigenvector (mode shape)
corresponding to the eigenvalue p, then n eigenvectors be obtained as

(1Z1-p,M{Q}={0}  withr=1,2, .., n (9)

5. ldentification algorithm

In equation (6} the assembled stiffness matrix [K] is split as [K] = [K ] + [K ], where [K ] and [K ] are
of the same size as that of the assembled stiffness matrix. The matrix [K ] contains contribution at cracked
element dofs from the cracked element only whereas the matrix [K ] contains contribution of all other
elements. On substituting into equation (6} the resulting equation, after rearranging, becomes

K]{Q} = {£} with  {£} = (0, M]-[K,.HQ}) (10)

Since the matrix [K } is of the same size as the assembled stiffness matrix and it contains non-zero terms
onily cotresponding to the crack nodal dofs. Thus, equation {10} can be reduced to the following form

(K,17(Q.)" ={F.} | | (11)
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where {I:‘C} contains elements only corresponding to cracked element nodal dofs in {f—"} as defined in

equation (10). Equation (11) can be used to obtain the unknown flexibility coefficients in the matrix
[K.]”. However, since the matrix [K.]® contains the flexibility coefficient matrix [C.]® in the form of its
inverse hence the resulting identification algorithm becomes a non-linear estimator and that is having
inherent problem of convergence along with the problem of obtaining the physically meaningful parameters,
The non-linear estimator has been avoided in the present study with the following re-arrangement of
equation (11). On post-multiplication in both sides of equation (4} by response 1Q 1 vields

(K9 {Q}e = m[C]“”J{TJT{QC}"” {12)
On equating Equations (11} and {12}, we get

[TICI TIHQ e ={ £ } (13)
By rearranging equation (13), we get

[CJ{A}= {B,} (14)
with {B,}={B,}- [C,J*{A,}; . {A = (TPITITI{E } and {B} = [T17[Q N (15)

Equation (14) can be rearranged in the standard regression equation as

Equation (14) can be rearranged in the standard regression equation as

[SKC}= {B,} with iCr={C, C, C, i C..} {16)
In equation (16), the vector {C } contains all unknown crack flexibility coefficients. The matrix [Sland the
vector {B,} contain all known information i.e. the uncracked beam model, the crack location, natural
frequencies and corresponding mode shapes. Equation (16) contains four equations with five unknown
crack flexibility coefficients: hence it is an underdetermined system of equations. Since crack
fiexibility coefficients do not change with modes, hence, with minimum up to second modes we can have
eight equations to solve for five unknowns. Then the system of equation will be an over determined
which could be solved using the normal least squares method. Theoretically, from the fracture
mechanics approach flexibility coefficients of the compliance matrix are expressed as a function of

- crack depth ratio ; = a/R [7]. The error function between the identified (superscript: id) flexibility
coefficients and the theoretical (superscript: th) flexibility coefficients can be defined as,

f

5 a2 2 :
oor = ) [C‘h—c‘d] +[cm-c”) {17)
A G
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where C, are crack flexibility coefficients. Minimizing the emror function with respect to the crack depth

ratio 4 in conjunction with Newton-Raphson method, the equivalent crack depth ratio can be obtained.
6. Numerical examples _

For the numerical example the assurned properties of the beam are presented in the Tablel. The first and
second natural frequencies of uncracked beam are found from the equation {8) as 20.18 Hz and 80.73 Hz,
respectively. The corresponding mode shapes are shown in Figure 2 with solid lines, A crack of the crack
of the depth ratio ;= a/R = 0.7 is introduced at the crack location ratio 3= x/L = 0.6. Crack
flexibility coefficients are obtained from the linear fracture mechanics approach [7], By using equation (8)
the first and second natural frequencies of the cracked beam are found to be 19.97 Hz and 80.3 Hz. Mode
shapes associated with these frequencies are also obtained and shown in Figure 2 with dashed lines,
These natural frequencies and mode shapes, which are obtained from the numerical experiment, is
used to estimate crack parameters. Through equation {16) crack flexibility coefficients are estimated. The
estimated crack flexibility coefficients are given in Table 2. The equivalent crack depth is estimated
as 0.698 from equation (17). For other crack sizes also, estimated parameters are presented in the Table
Z and all the estimated parameters are very close to assumed crack parameters.

7. Conclusions

In order to obtain the crack parameters (i.e. crack flexibility coefficients and crack depth) of a cracked
beam, an identification algorithm has been described. The crack flexibility coefficients are estimated
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from the measured free vibration i.e. the natural frequencies and mode shapes of the cracked beam. The
equivalent crack depth is obtained by using the crack flexibility coefficients. Since the FEM is applied in
the proposed algorithm, it has flexibility over the types of constraints (i.e. support conditions) and
kinds of loads applied to the system. Hence it is quite general in nature and simple to apply. Numerical
examples illustrate and validate the method. As it is difficult to measure mode shapes accurately
in actual systems, the practicability of the method is needed further investigations.
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Figure 1. A cracked baam slement In & general loading.
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Figure 2. (a) First mode shape and (b) second mode shape of the uncracked and cracked beam
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