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Abstract

Supervision of tool wear is the most difficult task in tool condition monitoring. Without the proper diagnosis
of tool condition, the full automation can not be realized in the industry. Despite more than one decade of
intensive research on the intelligent tool condition monitoring, the development of tool wear monitoring
systems is an on-going attempt. This paper presents a summary of the soft computing techniques used for
the diagnosis of the condition of a drill bit during drilling. Only limited attempts have been made to apply
artificial neural networks, fuzzy logic systems, hybrid systems for monitoring and controlling of the drill
wear. y ‘ ‘ : :
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1 Introduction o ' . B

Drilling is one of the most common manufacturing processes. The worn drill produces a poor-quality
hole and in extreme case, the drill may be broken which results a complete halt to the production. In order
to ensure the high quality product, and at the same time to avoid loss of production time, drill wear must
be monitored effectively. The drill wear can be measured directly with optical methods (e.g. CCD camera
or fibre optic sensor) during intervals of the cutting procgss, _{P(lthough direct methods can accurately
measure the drill wear, but these methods are not suitable for automated manufacturing process where
cutting process is continuous. The present trends in the area of tool condition monitoring are to measure
different process Parameters through sensor signals, which are indirectly correlated to drill weat. An
indirect method oij:,f/‘yt'" ol condition monitoring allows the estimation of tool wear online; thus does not
interrupt the cutting process, and is very much suitable for fully automated manufacturing systems. Effective
tool condition monitoring (TCM) is still a great challenge to the manufacturing society due to the complexity
of the cutting process and complex tool wear pattern. Without the effective TCM, the full automation of a
manufacturing process can not be realized. It is very often difficult to obtain a mathematical model which
can accurately predict the tool wear state. Artificial neural network, Fuzzy logic System, Genetic algorithm,
Simulated annealing, and combination of any two or more of these soft computing tools can effectively
map the nonlinear relationship of the sensors signals and wear state, and control the process parameters
for maximizing the utilization of the cutting tool. This paper presents a summary of the different soft
computing techniques applied to drill wear and failure monitoring systems. Only limited attempts have
been made on the application of soft computing techniques for tool wear and fracture monitoring in
drilling compared to other machining processes like turning, milling, etc.

2 Application of Artificial Neural Networks (ANN) in TCM

Artificial neural network is a 'ccillection of simple, interconnected nodes which operate in barallel, and
store knowledge through the connection weights between nodes of adjacent layers. The types of neural
networks which were already applied to drill wear monitoring successfully are presented in the following
sections. :

2.1 Multilayer Neural Network

Drill wear was predicted with the help of a letilayer neural network trained 4wiyth signals from four
sensors namely thrust force, torque and strains in two orthogonal directions to the drill axis [2]. Different
architectures of multilayer feed forward neural network with back propagation training were compared,
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and the best architecture was determined for predicting drill wear [7]. Mean values of thrust force and torque
signals were used along with the cutting conditions as inputs to the network. Eight features extracted from the
thrust force and torque signals and three cutting conditions (speed, feed, and drill diameter) were used as input
to the back propagation neural network to predict drill wear state in [9]. Several architectures of multilayer
neural network with a back propagation training algorithm were compared for drill wear monitoring [13]. Training
data set was extracted from the acquired vibration signal from an accelerometer attached to the work piece. It
was shown that the frequency domain features such as average harmonic wavelet coefficients, and the maximum
entropy spectrum peaks were more efficient in training the network than the time-domain statistical moments.
Average thrust force, average torque, peak thrust force, peak torque, RMS thrust force, RMS torque, area
under the thrust force versus time and the area under torque versus time were used as the input to the modified
back propagation neural network with adaptive activation function slopes for the classification of the drill wear
[5]. Modified neural network converged much faster than the conventional feed forward neural network. A
multilayer neural network with back propagation training algorithm was developed and tested for drill wear
- prediction at different cutting conditions [15]. The network was trained and tested by experimental data containing
thrust force, torque, spindle speed, feed rate, drill diameter and maximum flank wear. Network architecture 5-4-
1 with learning rate 0.3 and momentum coefficient 0.3 has lowest error in predicting the flank wear for the
testing case used in the analysis. '

2.2 Self Organizing Neural Network -

This type of neural network is based on competitive learning and the output neurons of the network
compete among themselves to be activated or fired for any applied input pattern. The synaptic weights of
the neurons are initialized randomly; and once the network has been initialized, the unsupervised learning
of the network is performed through competition, cooperation and synaptic weight updation processes. A
diagnosis system based on a self- organizing neural network was developed [4]. The input patterns
applied to the network was consisting of 33 components; 30 components extracted from FFT analysis of
feed-force and torque signals, 3 components are three drill wear states. The proposed network operated
in two phases: an adaptation and a classification. During adaptationphade, 9= (0, Q,) of setK optlmally
represent the empirical distribution of input vector X = (X, X)of setN, where K< <N,

X : represents 30 FFT based component of sensor signal
X, represents 3 gescrnptor (three drill wear state)
Q, : sensory feature part of the prototype vector 9

N Q, + descriptor part of the prototype vector

During classification phase, new sensory signal components X were applied to the network. The prototype )
havmg the sensory feature part most similar to the input pattem was selected from minimum Euclidian distance

d(x ,0,) = minimum, where j=1l..K

The descriptor part Q,, of the selected prototype was the estimated drlll wear class for the input pattern whose
wear state was unknown. The classification error was studied with different numbers of features and considering
both adaptation and without adaptation of the prototype vector 9. The network was trained, and tested for one
particular cutting condition. The effect of cutting conditions was not considered. : ,

2.3 Adaptive Resonance Theory (ART) Networks

According to adaptive resonance theory (ART), adaptive resonance occurs when the input to a network and the
feedback expectancies match. ART2-type neural networks have been developed to realize the self organized
stable pattern recognition capability in real time. If the input pattern to the network is found similar to any of the
previously encountered patterns, it will be then kept in the same category of similar patterns. Otherwise, the
input pattern will form a new category. In this way all the input patterns are categorized. Total number of
categories will depend on a factor known as vigilance. High vigilance will increase sensitivity, reduce error and
generate large number of categories. An optimum value must be created for reasonable number of categories
and minimum error. ART2-type network has been used for the detection of severe micro-drill damage just
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before a complete tip breakage occurs [3). Wavelet coefficients of the thrust force signals were used to train the
ART2-type neural network. Two approaches were tested. In the first one, called as direct encoding, 22 wavelet
coefficients out of total 24 original wavelet coefficients from the thrust force signal were presented to the
network; and in the second, called as secondary encoding, six most significant coefficients were presented to the
network. The direct encoding method was found to be slower but more accurate. There was only one classification
error in 61 cases. The ARTZ with secondary encoding method was much faster but there were at least three
classification errors in any of the two studied case. :

2.4 The Learning Vector Quantization (LVQ) Neural Network

Drill wear was estimated by the supervised vector quantization neural networks, which were trained by the
extracted features from vibration signals [14]. The network is trained with training patterns having 47 input
features; 6 Power Spectrum Density (PSD) peak values and their respective 6 locations (a total of 12 PSD
indices), 32 averaged Continuous Wavelet Transform (CWT) scales, 2 inputs for cutting conditions (speed and
feed), and 1 input for the drilling lengths, and their corresponding output target nodes (11 classes) which state the
measured flank-land wear size. Fig. 1 shows a schematic diagram of a LVQ used in [14], where x= (X Xgperennn. Xy
is input feature vector y= ( Yo y2 i 'y&'")v is the »synap’(ic weight of the m™ neuron in the neural layer,
v=(y,9,....9,) is the output vector, and t=(t,t,....t ) isthe target vector. The network was trained through
LVQ algorithm using 53 training patterns and tested with unseen data for different cutting condition (speed and
feed). The same drill was used throughout the training and testing phase, the effect of drill diameter was not
tested in the analysis. - SERRVEE R PR : S e : '
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Fig.1. Learning vector quantization network [14]
2.5 Recurrent Neural Networks

Recurrent networks are neural networks with one or more feedback loops. The basic building block of this type
of network is multilayer perceptron. In [8], two recurrent neural networks were used as neural identifier and
neural controller with a recursive least square training algorithm. This training algorithm improved the performance
of the network by avoiding the long training time associated with the commonly used feed forward networks.
The neural identifier was used to model the drilling dynamics by correlating feed-rate with thrust force, where
current feed-rate, previous values of feed-rate and thrust force were used as input and current thrust force used
as output. The output of the trained identifier was then used to train the neural controller. The feed-rate was
controlled through this controller to maintain the thrust force at desired limit for minimizing the delamination

while drilling a graphite-epoxy laminate. The effect of speed parameter on the thrust force was not considered
in this analysis. : '
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2.6 Abductive Network

These networks are composed of a number of polynomial functional nodes, and are organized into several
layers. The best network structure, number of layers and node types are determined automatically by using a
Predicted Squared Error (PSE) criterion. Tool life, metal removal rate, thrust force and torque were predicted
- under varying drill diameter, cutting speed and feed rate by an abductive network [10]. Simulated annealing was
applied to the network in determining the best combination of speed and feed-rate for optimum tool life and metal
. femoving rate.

3 Application of Fuzzy Logic System in TCM

Drill wear classifications in previously mentioned papers were based on the predefined crisp limits. A different
approach have been considered in paper [1, 6, 11] to classify drill wear states, which are fuzzy in nature i.e.,
states are not exactly defined and limits overlap.

The features of the drill wear monitoring system used in [1] were graded by four fuzzy parameters 'initial’,
'small', 'normal', and 'severe'. The input features were measured thrust force and torque values. The drill wear
states were monitored by a fuzzy C-means algorithm which consisting of three parts: feature selection, clustering
and classification, Two test cases used for the development of the fuzzy system worked well. However, the
approach did not take into account the effect of different cutting conditions, i.e. the user would need to defme
new fuzzy limit for different types of work piece materials, drills, speeds and feed-rates.

A fuzzy classification method was used to classxfy the drill wear states in [11]. A regression analysis was used
to model the spindle motor current and feed motor current as functions of spindle speed, feed rate, drill diameter
and drill wear. A control scheme for tool replacement was proposed based on the membershlp grade for the drill
wear state.

A real time fuzzy logic control scheme, shown in fig. 2 was developed in [6] to monitor the drill wear conditions,
and to control the feed rate for maximizing drill life and for preventing drill failure in automated small diameter
drilling operation. The membership functions for three input variables {thnist force, torque and radial force), drill
wear states and output variable (feed-rate) were taken as sinusoidal, trapezoidal and triangular, respectively.
Diagnosis of drill wear state was performed by fuzzy min-max algorithm. The results from drill wear state
. diagnosis was used as mput to the fuzzy logic controller to optnmally control the feed-rate.
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Fig. 2. Aschematic dlagram of fuzzy logic control system used in [6]
4 Apphcatlon of Hybrid System

In order to overcome the drawbacks and to utilize the strong features of Neural Network (NN) and Fuzzy Logic
system (FLS), a hybrid model (here the combination of both NN and FLS) was developed for drill wear monitoring
- [12]. The R M.S. values of the vibration signal in five frequency bands were taken as input X (x,,......... , X )to
the Fuzzy Neural Network (FNN), shown in fig. 3. The drill wear state which was the output Y(y,, y,,......,y,) of
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the FNN, was classified into five fuzzy membership grades, The FNN would recognize the air cutting and failure
of the drill perfectly, but the recognition rates of initial, acceptable and severe tool condition were not satisfactory
(less than 75%). The effect of drill wear on the vibration signal was only considered in the development of the
FNN model. The effects of cutting conditions were not considered. '
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- Fig. 3. FNN architecture used in [12]

A fuzzy learning vector quantization (FLVQ) neural network was also trained and tested with the same data
sets used by a simple learning vector quantization (LVQ) network mentioned eatlier in [14]. It was reported that
the misclassification rate in classification of flank wear was less for FLVQ compared to LVQ network.

5 Conclusion

A summary of different soft computing techniques used for drill wear and failure monitoring and control has
been presented in this work. Only a limited number of automatic diagnostic tools have been developed for tool
condition monitoring in drilling. A large number of diagnostic tools used are multilayer neural network and these
were tested for limited cutting conditions. Other soft computing tools were tested in very few cases. Thereis no
generalized diagnostic tool developed which will work for all-cuttihg conditions i.e., variation of work piece
material, tool material, speed, feed rate. B
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